Chinese Short-Text Classification Based on Topic Model with High-Frequency Feature Expansion

نویسندگان

  • Hu Y. Jun
  • Jiang J. Xin
  • Chang H. You
چکیده

Short text differs from traditional documents in its shortness and sparseness. Feature extension can ease the problem of high sparseness in the vector space model, but it inevitably introduces noise. To resolve this problem, this paper proposes a high-frequency feature expansion method based on a latent Dirichlet allocation (LDA) topic model. High-frequency features are extracted from each category as the feature space, using LDA to derive latent topics from the corpus, and topic words are extended to the short text. Extensive experiments are conducted on Chinese short messages and news titles. The proposed method for classifying Chinese short texts outperforms conventional classification methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

A Method for Chinese Short Text Classification Considering Effective Feature Expansion

This paper presents a Chinese short text classification method which considering extended semantic constraints and statistical constraints. This method uses “HowNet” tools to build the attribute set of concept. when coming to the part of feature expansion, we judge the collocation between the attribute words of original text and the characteristics before and after expansion as the semantic con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Multimedia

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013